首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10773篇
  免费   1490篇
  国内免费   5976篇
  2024年   15篇
  2023年   408篇
  2022年   468篇
  2021年   562篇
  2020年   711篇
  2019年   817篇
  2018年   775篇
  2017年   745篇
  2016年   702篇
  2015年   712篇
  2014年   700篇
  2013年   876篇
  2012年   692篇
  2011年   672篇
  2010年   551篇
  2009年   723篇
  2008年   642篇
  2007年   745篇
  2006年   643篇
  2005年   632篇
  2004年   539篇
  2003年   551篇
  2002年   467篇
  2001年   416篇
  2000年   360篇
  1999年   369篇
  1998年   273篇
  1997年   277篇
  1996年   271篇
  1995年   249篇
  1994年   236篇
  1993年   197篇
  1992年   179篇
  1991年   143篇
  1990年   153篇
  1989年   146篇
  1988年   116篇
  1987年   88篇
  1986年   68篇
  1985年   60篇
  1984年   54篇
  1983年   18篇
  1982年   68篇
  1981年   39篇
  1980年   32篇
  1979年   28篇
  1978年   8篇
  1977年   10篇
  1973年   7篇
  1958年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Chemical P extraction from soils is an indirect and frequently questionable index for P availability. To monitor the dynamics of P availability in soils more directly following the application of P fertilizer, manure or sludge, a rapid, whole-plant bioassay was developed using tomato (Lycopersicon esculentum Mill.), Chinese cabbage (Brassica rapa L. var.pekinensis) and wheat (Triticum aestivum L.). Plant P extracted in 0.1 M H2SO4 (Pi) and total P (Pt) concentration or content in stem, leaves or whole shoots were highly correlated (P < 0.01) with P fertilizer rates or water-soluble (WSP) or Olsen P in various soils, over wide ranges of soil P status. The whole-plant Pi content was found to be as informative as the more complicated indices of Pt or Piconcentration. The assay was used to compare availability of fertilizer-P and sewage-sludge-P after incorporation into alluvial soil during 1–100 days of incubation. While both soil and plant indices had shown that fertilizer-P was more highly available than sewage-sludge-P in each period, the bioassay was much more sensitive than the Olsen-P or WSP soil indices in showing P fixation and decrease of availability during incubation time. The bioassay is sufficiently rapid (5–12 days) to allow a study of short-term changes in soil-P availability following incorporation of various P additives, and it is applicable to a very wide range of P availability values (6–535 mg Olsen-P kg–1), extending from lower than desired for crop production to higher than permitted from an environmental standpoint.  相似文献   
992.
The rapid development of agricultural biotechnology and release of new transgenic plants for agriculture has provided many economic benefits, but has also raised concern over the potential impact of transgenic plants on the environment. Considerable research has now been conducted on the effects of transgenic plants on soil microorganisms. These effects include unintentional changes in the chemical compositions of root exudates, and the direct effects of transgenic proteins on nontarget species of soil microorganisms. Most studies to date suggest that transgenic plants that have been released cause minor changes in microbial community structures that are often transient in duration. However, due to our limited knowledge of the linkage between microbial community structure and function, more work needs to be done on a case-by-case basis to further evaluate the effects of transgenic plants on soil microorganisms and soil ecosystem functions. This review summarizes the results of a variety of experiments that have been conducted to specifically test the effects of transgenic plants on soil microorganisms, and particularly examines the types of methods that are being used to study microbial interactions with transgenic plants.  相似文献   
993.
A study was conducted during the 1996–97 crop growth season at ICARDA in northern Syria, to investigate the influence of wheat canopy architecture on the partitioning of moisture between soil evaporation and crop transpiration, on a soil with high hydraulic conductivity. The study was conducted on the long-term two course wheat-lentil rotation trial, established on a swelling clay soil (Calcixerollic xerochrept). The wheat canopy architecture was manipulated by sowing the crop at either of two row-spacings, 0.17 or 0.30 m, both at a constant sowing rate equivalent to 120 kg ha–1. In this study, evapotranspiration from the crop was inferred from changes in soil moisture content over time, evaporation and rainfall interception were measured daily using microlysimetry, drainage was estimated as being the difference between potential daily evapotranspiration, and the evapotranspiration estimated from the soil water deficit. Between sowing and day 80 (tillering stage), evapotranspiration was calculated to consist mainly of soil evaporation. However, after day 80, transpiration became an increasingly dominant component of evapotranspiration. For both row-spacings, cumulative evapotranspiration over the season was approximately 373 mm. In the narrow-row crop, transpiration and soil evaporation were approximately 185 mm and 183 mm of water respectively. Conversely for the wide row-spaced crop, 172 mm of water was transpired while about 205 mm of water evaporated from the soil surface. While green leaf area index did not differ between row-spacings, the architecture of the crops as a result of sowing affected solar radiation penetration such that more incident radiation was intercepted at the soil surface of the wide row-spaced crop. This is likely to have made some contribution to the elevated levels of evaporation from the soil beneath the canopy of the wide-sown crop.  相似文献   
994.
Biological soil crusts composed of cyanobacteria, green algae, bryophytes, and lichens colonize soils in arid and semiarid ecosystems worldwide and are responsible for significant N input to the soils of these ecosystems. Soil crusts also colonize active sand dunes in more humid regions, but studies of structure and function of such sand dune crusts are lacking. We identified the cyanobacterial, algal, and bryophytic constituents and N production and leachates of biological soil crusts that colonize beach dunes at the Indiana Dunes National Lakeshore along southern Lake Michigan in Indiana, USA. To determine the role of these crusts in this system, we conducted a greenhouse experiment in which intact soil cores with biological crusts were subjected to artificial rainfall over a full growing season. The volume and N content of leachate from the cores were quantified in relation to degree of crust development, taxonomic composition, rainfall volume and intensity, light intensity, and the presence of plant litter. Net N throughput significantly exceeded N inputs to cores in rainwater. Net N outputs from crusts to subsurface soil ranged from 0. 01 to 0.19 g NH 4 + -N m−2 yr−1 and 0.01 to 0.61 g NO 3 N m−2 yr−1. Thus, total inorganic N inputs associated with biological soil crusts ranged from 0.02 g N m−2 yr−1 to 0.8 g N m−2 yr−1. High volume (≥2 cm) rainfall resulted in more N leaching than low volume events, and plant litter added over the surface of crusted soil cores significantly increased the amount of N in leachate. Exploratory path analysis revealed direct and indirect linkages among environmental factors, crust development, and crust composition in regulating the throughput of H2O and N from these intact soil cores. Biological soil crusts at this site, combined with other properties of the soil surface, substantially increase N inputs to this water- and nutrient-limited sand dune ecosystem.  相似文献   
995.
In the absence of fire in black spruce-feathermoss stands, a thick forest floor layer dominated by bryophytes and sphagnum accumulates. This layer is associated with wet, cool and nutrient-poor soil conditions conducive to the paludification process and pushing the ecosystem towards an unproductive open black spruce forest. The presence of Populus tremuloides in theses stands may halt this process because this species has a high nutrient cycling rate and a litter that represses moss cover. The main hypothesis of this study is that, despite similar abiotic conditions (slope and drainage), the presence of Populus tremuloides in a stand dominated by Picea mariana affects surface soil nutrient availability, total N, pH as well as the decomposition process. The abundance of Populus tremuloides trees was associated with higher exchangeable cations, cationic exchangeable capacity and pH of the forest floor layer on all sites. A decrease in organic matter thickness with increasing aspen presence was also found on all sites, suggesting that this species affects the decomposition process by the quality of its litter as well as by a general improvement of soil physical and chemical properties. The decomposition rate of a standard substrate as well as in vitro potential net nitrogen mineralization were positively related to Populus tremuloides on only one of the three sites, and non-significant on the other sites. Strong immobilization of added nitrogen during incubation was observed on all sites and was not related to aspen, which suggested that in these stands, the soil microbial community is uniformly and strongly nitrogen limited. The zone of influence of Populus tremuloides was evaluated in areas around the soil sampling plot ranging from 3 to 7 m. The results revealed that this zone varies with soil properties. The results suggest that the presence of Populus tremuloides accelerate nutrient cycling, which could affect stand productivity to some extent.  相似文献   
996.
Quantifying patterns of fine root dynamics is crucial to the understanding of ecosystem structure and function, and in predicting how ecosystems respond to disturbance. Part of this understanding involves consideration of the carbon lost through root turnover. In the context of the rainfall pattern in the tropics, it was hypothesised that rainfall would strongly influence fine root biomass and longevity. A field study was conducted to determine root biomass, elemental composition and the influence of rainfall on longevity of fine roots in a tropical lowland evergreen rainforest at Danum Valley, Sabah, Malaysia. A combination of root coring, elemental analysis and rhizotron observation methods were used. Fine (less than 2 mm diameter) root biomass was relatively low (1700 kg ha −1) compared with previously described rainforest data. Standing root biomass was positively correlated with preceding rainfall, and the low fine root biomass in the dry season contained higher concentrations of N and lower concentrations of P and K than at other times. Observations on rhizotrons demonstrated that the decrease in fine root biomass in the dry season was a product of both a decrease in fine root length appearance and an increase in fine root length disappearance. Fitting an overall model to root survival time showed significant effects of rainfall preceding root disappearance, with the hazard of root disappearance decreasing by 8 for each 1 mm increase in the average daily (30 day) rainfall preceding root disappearance. While it is acknowledged that other factors have a part to play, this work demonstrates the importance of rainfall and soil moisture in influencing root biomass and root disappearance in this tropical rainforest.  相似文献   
997.
1. We examined impacts of nutrient loading, particularly of nitrogen and phosphorus, from greater snow geese (Chen caerulescens atlantica) on a reservoir in south‐eastern Pennsylvania, U.S.A. Approximately 100 000 geese use the reservoir for 2–6 weeks prior to their spring migration northward. 2. We estimated the magnitude of nutrient loading by geese during their presence and compared that to surface input and output rates. We also conducted nutrient limitation bioassay experiments to examine patterns of algal nutrient limitation upstream and downstream of the reservoir. 3. During their presence from 1 February to 27 March 2001, snow geese contributed 85–93% of the phosphorus and 33–44% of the nitrogen loaded to the reservoir. Both nutrients were exported from the reservoir slowly rather than as a quick pulse. Consequently, phosphorus concentrations in the outflow were higher than in the inflow from February to the end of July. However, nitrogen concentrations were consistently lower in the outflow than the inflow. 4. Nutrient limitation bioassays conducted in June and July indicated that primary production in the outflow was limited by nitrogen whereas the inflow was co‐limited by nitrogen and phosphorus. Further downstream from the reservoir, primary production was consistently phosphorus limited. Therefore, nitrogen limitation persisted long after the geese had left, but was relatively localised.  相似文献   
998.
1. Benthivorous fish may play an important role in internal nutrient loading. Ruffe are highly specialised, feeding exclusively on bottom animals; thus all nutrients released via their feeding are derived from the bottom and are new to the water column. The fish can also release nutrients from the sediment through resuspension while searching for food. 2. The aim of this study was to estimate experimentally in the laboratory the effect on water quality of resuspension and nutrient release by ruffe and bottom animals (chironomids). 3. Ruffe released nutrients during 8 h experiments as follows: total P 1.4, dissolved PO4 0.6, total N 24.0 and NH4‐N 15.9 μg g?1 WW h?1. A decreasing trend in mass‐specific release was observed over time, probably because of starvation. The mass‐specific release of total N and NH4‐N decreased as the mean weight of fish increased. The mean ratio of excreted N : P was 32. 4. In 26 h experiments with sediment and both ruffe and chironomids, ruffe increased nutrient concentrations and turbidity values significantly but chironomids had an effect only on turbidity. Neither ruffe nor chironomids affected the ratio of inorganic N : P concentrations. An interaction between ruffe and chironomids was found for turbidity. 5. According to these results, benthivorous fish may increase nutrient concentrations in the water column and need to be taken into account when estimating internal loading.  相似文献   
999.
Monthly skeletal growth of the scleractinian, temperate coral Cladocora caespitosa (L.) from the Ligurian Sea (NW Mediterranean) was analysed for a period of 1 year and compared with seawater parameters. Measurements on corallite sections and on X-ray images showed that the formation of the high-density (HD) band and two dissepiments are favoured by fall–winter conditions, characterised by high quantities of rain, rough seas, and cold seawater. In summer, when the low-density (LD) band is formed, the corallites stretch upward and form one new dissepiment and one deep calix, where the polyps recede almost completely in August. These findings confirmed the adaptation of the temperate coral to winter environmental conditions, characterised by low irradiance and high availability of nutrients and food particles resuspended from bottom sediments. On the contrary, the high seawater temperature, irradiance, and ammonia contents stressed the coral in August and, when they persist in September, may cause the onset of mortality events.  相似文献   
1000.
土壤含水量对桔小实蝇蛹期存活的影响   总被引:6,自引:0,他引:6  
浸水时间、土壤含水量对桔小实蝇Bactroceradorsalis(Hendel)蛹的存活及成虫羽化的影响的研究结果表明:(1)不同浸水时间对桔小实蝇蛹存活率的影响不同。浸水时间越长,蛹存活率越低;浸水对初期蛹的影响较大,蛹龄越大,浸水作用效果越低。浸水时间(TW)、蛹期(AP)和蛹存活率(SP)之间关系符合以下模型:SP=0.4165-0.00307TW+0.2290AP-0.00004496T2W-0.0002528A2P+0.00008258TWAP。(2)土壤含水量对桔小实蝇成虫羽化影响明显。当土壤含水量较低或较高时,羽化率都明显受到抑制。相对含水量在30%~80%之间,蛹的羽化率较高。相对含水量(Ws)和成虫羽化率(E)之间存在以下关系:E=0.396+0.01985W-0.000181W2。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号